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Let X be a compact space and C(X) the space of continuous complex
valued functions on X. For g E C(X) define

II gil = sup{1 g(x)l: x EX}.

Let F be a nonlinear approximating function with parameter vector A =
[al ,..., an] taken from P, a subset of complex n-space. We say that A is
locally best to lif for all B (cFA) in a neighborhood N of A,

III - F(A, .)Ii :'( III - F(B, ·)11.

If the inequality is strict, we say A is strongly locally best. In this note we
characterize locally best approximation by parameters at which F satisfies
the local Haar condition defined below.

Preliminaries

We define a norm for parameter vectors,

II A II = max{1 ak I: k = 1,... , n}.

Denote the partial derivative of F with respect to the kth parameter com
ponent ak by Fk • Define

n

D(A, B, x) = I FiA, x) bk ,

k~l

DEFINITION. F has the local Haar property at A E P on we X if

(i) the space

SeA) = {D(A, B, .): BEen}

is a Haar subspace of dimension n on W.
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(ii) there is a neighborhood N of A such that N C P and F(B, .) E C(X)
for BEN.

(iii) Define

R(A, B, x):= F(A + B, x) - F(A, x) - D(A, B, x),

then
il R(A, B, .)11 = 0(11 B II) as II BI[--+ 0.

We do not assume that F has the local Haar property at all of its parameters
inP.

We do not assume that SeA) is a Haar subspace on X. One reason is
that we may wish to consider approximation problems in which all approxi
mants vanish on a closed set V. Another reason is that Haar subspaces
of dimension > 1 can exist only on quite restricted X [3]; in particular,
the author knows of no case where X is larger than the extended complex
plane.

Hypothesis (iii) is satisfied if F has a first order Taylor expansion in its
parameters with second order remainder.

Characterization of Locally Best Approximation

Let us fix f and let M(A) be the set of points of X such that

If(x) - F(A, x)[ = Ilf - F(A, .)11.

If F(A, .) is continuous, If - F(A, .)1 is continuous and M(A) is a closed
nonempty set.

THEOREM 1. Let F have the local Haar property at A on M(A). A necessary
and sufficient condition for A to be locally best to f ~ F(A, .) on X is that
for all B ~ 0,

YJ(B) = inf{Re[(f(x) - F(A, x)) . D(A, B, x)]: x E M(A)} < 0. (1)

Proof Sufficiency. Suppose A is not strongly locally best; then there
is a sequence {Bk }, II B k II --+ 0, such that

Ilf - F(A + Bk , ·)11 ~ Ilf - F(A, .)11.

We, therefore, have

Re[(f(x) - F(A, x)) . (F(A + Bk , x) - F(A, x))] ~ 0,

and by (iii),

XE M(A),

Re[(f(x) - F(A, x)) . (D(A , Bk , x) + R(A, Bk , x))] ~ 0, X E M(A). (2)
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Define B k ' = Bk/II B k [I; then {Bk '} has an accumulation point B, II B II = 1.
Assume without loss of generality that {Bk '} -+ B. Let

fL = inf{Re[(f(x) - F(A, x)) . D(A, B, x)): x E M(A)}.

Suppose fL < 0. There is a point x of M(A) such that

Re[(f(x) - F(A, x)) . D(A, B, x)) = fL < 0.

Consider the sequence

Re[(f(x) - F(A, x)) . (D(A, Bk , x) + R(A, Bk , x)))/II Bk II.

(3)

As D(A, B k , x)/II B k II = D(A, B k ', x) and R(A, B k , x) = 0(11 B k ID, this
sequence tends to the left-hand side of (3). This contradicts (2) and so
fL ~ 0. Hence (1) does not hold.

Necessity. Define for BE Cn ,

¢>(B, x) = Re[(f(x) - F(A, x)) D(A, B, x)).

Suppose there is B oF °with YJ(B) ~ 0. First consider the case with YJ(B) = 0.
Let H = ¢>(B, x). Let Z be the set of zeros of D(A, B, .) on M(A). By (i),
Z has no more than n - I points. Condition (i) guarantees that there exists
C such that

¢>(C, x) > 0, X E Z.

There is an open subset U of M(A) containing Z such that

¢>(C, x) > 0, X E U. (4)

If U = M(A), YJ(C) > 0. We now suppose that V = M(A) '" U is noo
empty. It is a closed subset of a compact set. Define a = inf{H(x): x E V}.

By continuity of H and compactness of V, there is an x E V such that
H(x) = a. But H(x) ~ °for x E M(A) and H vanishes only on Z, so a > 0.
Select ,\ such that

'\¢>(C, x) = ¢>(,\C, x) > -a.

From (1) and (5) we have

(5)

¢>(B + ,\C, x) > 0,

From (5) and the definition of a,

XE U. (6)

¢>(B + ,\C, x) > ¢>(B, x) + ¢>(,\C, x) > a + (-a) = 0, X E V. (7)
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Combining (6) and (7), we have

4>(B + AC, x) > 0, X E U U V = X.

Thus YJ(B + AC) > o. We need only, therefore, consider the case where
YJ(B) > o. It is known in this case that A is not locally best [2, Theorem 8,
p.306].

A consequence of the sufficiency argument is

COROLLARY. Let A be locally best to f and F have the local Haar property
at A on M(A); then A is strongly locally best.

REMARK. If SeA) is not of dimension n, (1) may not be sufficient for local
optimality. An example is given in the later section on exponential-poly
nomial products.

An Irreducible Set for Local Optimality

By arguments similar to those of [1, Section 3] (but using the version
of the theorem of Caratheodory dealing with complex numbers, from
whence comes 2n 7 1) we obtain

THEOREM 2. Let A be locally best to f on X and F have the local Haar
property at A on a set containing M(A). There is a subset T of X (containing
at least n + 1 points and not more than 2n + 1 points) such that

If(x) - F(A, x)1 == Ilf - F(A, .)11, XE T,

A is strongly locally best to f on T, and no smaller such subset exists.

Local Existence of Locally Best Approximations

THEOREM. Let X be a metric space. Let A be locally best to f in neighbor
hood N ofA and F have the local Haar property on M(A). There exists E > 0
such that ifflf - gil < E, g has a locally best approximation in N.

Proof By the local Haar property there exists a neighborhood N' of A
such that N' C P andF(B, .) E C(X)for BEN'. By the coroIlary to Theorem 1,

Ilf - F(A, ·)I! < Ilf - F(B, .)11, BEN "-'A.

Let L be a closed neighborhood of A in N n N'. It foIlows that there exists
E > 0 such that

I'f - F(A, .)11 < Ilf - F(B, .)11 - 2E,

Let Ilf - g < E; then

Ii! - F(A, .)1 < I, g - F(B, ·)11,

BE Bndry(L).

BE Bndry(L). (8)
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As II g - F(C, .)11 depends continuously on C ELand L is closed, there
is C* EL such that

II g - F(C*, .)11 = inf{11 g - F(C, .)11: C E L}.

By (8), C* E Int(L) and

II g - F(C*, .)11 :s;: II g - F(C, .)11,

Rational Approximation

C E Int(L).

Let X be a compact subset of the complex plane containing the origin
and at least I + m other points,

and let the parameter space be

!JJl = {A: Q(A, x) =1= 0 for x EX}.

There is no loss of generality in having the constant term in the denominator
equal to one; if it were zero, F(A, .) would have a pole at zero or would
have common factors in numerator and denominator. Define Q(B, x) =
Q(B, x) - 1. We have

D(A, B, x) = P(B, x)/Q(A, x) - P(A, x) Q(B, x)/Q2(A, x),

E(A, B, x) = Q2(A, x) D(A, B, x) = P(B, x) Q(A, x) - P(A, x) Q(B, x).

T(A) = {E(A, ., .)} is a linear space of dimension at most 1+ m + 1.
An approximant F(A, .) is said to be nondegenerate if it cannot be written
as P(B, x)/Q(B, x). It is readily seen that F(A,.) is nondegenerate if
P(A, .)/Q(A, .) have no common factors and alal+m =1= O. Suppose F(A, .)
is nondegenerate. The only zero element of T(A) is E(A, 0, .); hence T(A)
is a linear space of dimension I + m + 1. Suppose E(A, B, .) has I + m + 1
zeros on X. It is a power polynomial of degree at most I + m and so must
be identically zero. Hence T(A) is a Haar subspace of dimension I + m + 1
on X. We conclude that the local Haar condition is satisfied at A on X if
F(A, .) is nondegenerate. This remains true if we let the parameter space !JJl'
be any open subset of !JJl. In particular this is true if the parameter space is

!JJl+ = {A: Re Q(A, x) > 0 for x EX}.
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Polynomial-Rational Sums

Let X be a compact subset of the complex plane. Define

I m

F(A, x) = L aklO + a1+kX) + L a21+kx k- 1
•

k~l k~l

We will consider only parameters A such that

1 + a1+kx =1= °for all x E X, k = 1,... ,1. (9)

Also in the case m > 0, there is no point in permitting anyone of an +1 , ... , a2n

to vanish since any constant part can be put in through choice of a21+1 • We
therefore require

al+k =1= 0, k = 1,... ,1 if m > 0. (10)

Parameters A satisfying (9), (10) will be called admissible. An admissible
parameter is called standard if al-t-l ,... , a21are distinct. Any admissible para
meter has an equivalent standard parameter. A standard parameter A is
called nondegenerate if a1 , ... , al are nonzero. If A is nondegenerate, the
corresponding SeA) is a Haar subspace of dimension 21 + m (see the proof of
Lemma 2 of [5]) and F has the local Haar property at A on X.

The case where X is a compact subset of the extended complex plane
containing 00, in which case only m = °and m = 1 are of interest, are
handled using the approach just given and the approach of [5].

Exponential Polynomial Products

Let X be a compact subset of the complex plane and define for A =

(ao ,... , an),

We have

n

peA, x) = L akxk-\
k~l

F(A, x) = exp(aox) peA, x).

D(A, B, x) = exp(aox)[boxP(A, x) + PCB, x)].

If an =1= 0, P(A,.) is a polynomial of exact degree n - 1, xP(A, x) is of
exact degree n, and [boxP(A, x) + PCB, x)] is the space of polynomials
of degree n. Hence {D(A, B, .): BE en+1} is a Haar subspace of dimension
n + 1 on X. Our theory applies to F(A,.) with an =1=0. If an = °our theory
may not apply.

EXAMPLE. Let n = 2 and approximate f(x) = 1 - x 2 on X = {-I, 0, I}.
Consider F(A,.) = t, which has an = 0. f - F(A,.) attains -t, t, -t,
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respectively, on X. It can be shown by arguments used in linear Chebyshev
approximation that (1) holds, yet F(A, .) is not locally best even in the real
version of the problem [4].

Approximation by cjJ-Polynomials

Let X be a compact subset of complex space. Let cjJ be a function and Z
be an open subset of the complex plane containing the origin on which
cjJ is differentiable. There exists an open subset Y of the complex plane
such that azx E Z for az E Y, X E X. Define

F(A, x) = alcjJ(aZx), P = {(aI' az): az E Y}.

We have

If al = 0, SeA) is of dimension 1. If al =F- °and a2 = 0, SeA) is a Haar
subspace of dimension 2 if and only if cjJ(O) cjJ'(O) =F- 0. If ala2 =F- 0, it is
seen from the determinant definition of Haar subspace that SeA) is a Haar
subspace of dimension 2 if xcjJ'(x)!eP(x) is 1 : 1 on Z. We might have to
restrict Z to guarantee this.

Transformations

Let s be a continuous complex function on X and V = {x: sex) = OJ.
Let cjJ be a continuous mapping from the complex plane into the extended
complex plane. Define G(A, x) = sex) cjJ(F(A, x» for A E P. Let the parameter
space of G be PI = {A: G(A, x) E C(X), A E P}.

THEOREM 3. Let F have the local Haar property at A on Wand A E PI .
Let cjJ have a continuous nonvanishing derivative on y = {y: F(A, x) = y
for some x E X}, and for Yo E Y, y in an open set containing y, let

cjJ(y - Yo) = cjJ(Yo) + f(yo)(Y - Yo) + o(y - Yo)·

Then G has the Haar property at A on W roo..; V (if this has n points).

To prove this we argue as in the corresponding result in [1, p. 752].
The theorem can be applied to approximation by transformations of

linear families satisfying the Haar condition.
The case where s > ° corresponds to the introduction of a positive

weight function. In the following, * denotes multiplication.

COROLLARY. Let F have the local Haar property at A E P on X, a compact
subset of complex space containing at least n + 1 points. Then x *F has
the local Haar property at A E P on X'"" {O}.
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This applies if F is the approximating function for ratios of power
polynomials described earlier. x * F is a natural approximating form for a
functionfvanishing at zero.

COROLLARY. Let F have the local Haar property at A E P on W; then
exp(F) has the local Haar property at A E P on W.
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